

Abundance Enterprise Co. PRODUCT SPECIFICATION

SAW RESONATOR

AEC PART NUMBER / SPEC. NO: SR433.92-75-TO39

CUSTOMER: Schukat electronic Vertriebs GmbH

This model is ROHS/PB-free compliance according to the ROHS directive 2002/95/EC

Customer's Name	Schukat electronic Vertriebs GmbH	
Production Name	SAW RESONATOR	
Frequency	433.92MHz	
Model No	ТО39	
Issue Date	15 th Oct, 2013	

Address: Room 602-603, Java Commercial Centre,

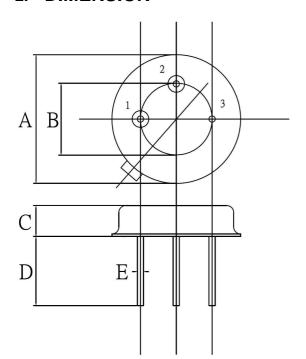
128 Java Road,

North Point, Hong Kong

Homepage: http://www.aeccrystal.com/

Email: sales@aeccrystal.com

Telephone: (852)-28560000 Fax (852) 2561 2161

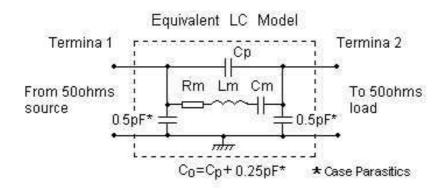

Prepared	Inspection	Approved
Nathan	Andy	Henkie

Product Specification	Abundance Enterprise Co.	Original Date	12/04/2008
r roduct Specification	Abundance Enterprise Co.	PN:	SR433.92-75-TO39

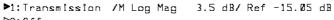
1. GENERAL PROVISION

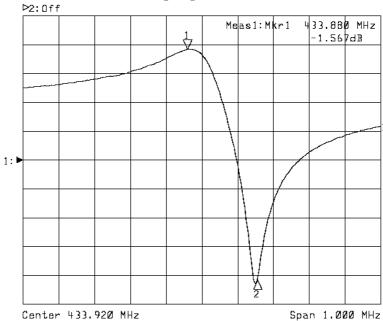
The SR433.92 is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile TO-39 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.92 MHz.

2. DIMENSION


Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

Dimensions	Data (Unit: mm)
А	9.30±0.20
В	5.08±0.10
С	3.40±0.20
D	3±0.20
E	0.45±0.20


8 ®		NO.	Revised DATE	N	MODIFY CONTENTS	
AEC		1	2006.12.15	NEW UPDATE		
Abundance Enterprise (se Co.					
DIMENTION	mm					
SCALE		PA	ART NAME	SAW RESONATOR		
TOLERANCE	±0.2		MODEL	TO39		
DRAWING NO.			APPV'D BY	СНЕСК ВҮ	DRAWN BY	
433.92-TO39			Henkie	Andy	Nathan	


Product Specification Abundance E	Abundance Enterprise Co.	Original Date	12/04/2008
	Abundance Enter prise Co.	PN:	SR433.92-75-TO39

3. EQUIVALENT LC MODEL AND TEST CIRCUIT

4. FREQUENCY RESPONSE

Product Specification	Abundance Enterprise Co.	Original Date	12/04/2008
r roduct Specification	Abundance Enterprise Co.	PN:	SR433.92-75-TO39

5. ELECTRICAL SPECIFICATION

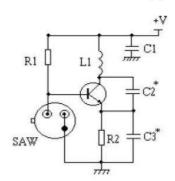
5-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	$^{\circ}\! \mathbb{C}$

5-2. Electronic Characteristic

Reference temperature: $TA = 25^{\circ}C$

Terminating source impedance: Zs = $50\,\Omega$ and matching network Terminating load impedance: ZL = $50\,\Omega$ and matching network


Char	acteristic	Sym	Minimum	Typical	Maximum	Units
	Absolute Frequency	f _C	433.845	7,1	433.995	MHz
Center Frequency (+25°C)	Tolerance from 433.92 MHz	$\triangle f_C$		±75		kHz
Insertion Loss		IL		1.5		dB
Ovelity Footon	Unloaded Q	Q _U		11,274		
Quality Factor	50 Ω Loaded Q	Q_L		1,800		
Temperature	Turnover Temperature	T _o	25	40	55	$^{\circ}\mathbb{C}$
Stability	Turnover Frequency	f _O		fc		kHz
Stability	Frequency Temperature	FTC		0.037		ppm/℃
Frequency Aging Absorption	olute Value during the First	$ f_A $		≤10		ppm/yr
DC Insulation Resistar	nce Between Any Two Pins		1.0			МΩ
	Motional Resistance	R_{M}		19	23	Ω
RF Equivalent RLC Model	Motional Inductance	L_M		78.605		μΗ
	Motional Capacitance	C _M		1.7132		fF
	Pin 1 to Pin 2 Static Capacitance	Co		1.9		pF

6. TYPICAL APPLICATION CIRCUIT

1) Typical Low-Power Transmitter Application

2) Typical Local Oscillator Application

8. REMARKS

- 1. Frequency aging is the change in $f_{\mathbb{C}}$ with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 : 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_C .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $T_C=+25\,^{\circ}\mathrm{C}\pm2\,^{\circ}\mathrm{C}$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O , The nominal center frequency at any case temperature, T_C , may be calculated from $f = f_O$ [1-FTC $(T_O T_C)^2$]. Typically, oscillator T_O is 20° C less than the specified resonator T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant

Product Specification	Abundance Enterprise Co.	Original Date	12/04/2008
	Abundance Enterprise Co.	PN:	SR433.92-75-TO39

frequency and is provided for reference only. The capacitance $C_{\rm O}$ is the measured static (non motional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to $C_{\rm O}$.